(1) Prove that if $n$ is an integer and $n^{2}$ is odd, then $n$ is odd.
(2) Prove that $\sqrt{p}$ is irrational, where $p$ is prime number.
(3) Show that the square of an even number is an even number.
(4) Prove or disprove that the product of two irrational numbers is irrational.
(5) Prove that if $x$ is rational and $x \neq 0$, then $\frac{1}{x}$ is rational.
(6) Prove that sum of a rational number and an irrational number is irrational.
(7) Prove that $f(x)=\sin x$ is continuous on $\mathbb{R}$.
(8) Show that and $f(x)=\left\{\begin{array}{ll}\sin \frac{1}{x} & \text { if } x=0 \\ 0 & \text { if } x \neq 0\end{array}\right.$ is not continuous at $x=0$.
(9) Prove or disprove $7^{n}-4^{n}$ is divisible by 3 , for all $n \in \mathbb{N}$.
(10) Prove or disprove $9\left(9^{n}-1\right)-8 n$ is divisible by 64 , for all $n \in \mathbb{N}$.
(11) Prove that $\arctan \frac{1}{3}+\arctan \frac{1}{7}+\cdots+\arctan \frac{1}{n^{2}+n+1}=\arctan \frac{n}{n+2}$, for all $n \in \mathbb{N}$.
(12) Prove that if $n$ is an integer, then $n^{2} \geq n$.
(13) Show that if $a$ and $b$ are integers and both $a b$ and $a+b$ are even, then both $a$ and $b$ are even.
(14) Prove that $m^{2}=n^{2}$ if and only if $m=n$ or $m=n$.
(15) Prove that if $n$ is a positive integer, then $n$ is even if and only if $7 n+4$ is even.
(16) Prove that if $n$ is a perfect square, then $n+2$ is not a perfect square.
(17) There is no surjection (onto) from a set $X$ to its power set $P(X)$.
(18) Let $n \in \mathbb{N}$ and suppose we are given real numbers $a_{1} \geq a_{2} \geq \ldots \geq a_{n} \geq 0$. Then Arithmetic mean $(\mathrm{AM})=\frac{a_{1}+a_{2}+\ldots a_{n}}{2} \geq\left(a_{1} a_{2} \ldots a_{n}\right)^{\frac{1}{n}}=$ GM (Geometric mean).
(19) Fix a positive integer $n$ and let $A$ be a set with $|A|=n$. Let $P(A)$ denote the power set of $A$. Then show that $|P(A)|=2^{n}$.

